Skip to main content

Advertisement

Log in

An Ecosystem Model Including Nitrogen Isotopes: Perspectives on a Study of the Marine Nitrogen Cycle

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We have developed an ecosystem model including two nitrogen isotopes (14N and 15N), and validated this model using an actual data set. A study of nitrogen isotopic ratios (δ15N) using a marine ecosystem model is thought to be most helpful in quantitatively understanding the marine nitrogen cycle. Moreover, the model study may indicate a new potential of δ15N as a tracer. This model has six compartments: phytoplankton, zooplankton, particulate organic nitrogen, dissolved organic nitrogen, nitrate and ammonium in a two-box model, and has biological processes with/without isotopic fractionation. We have applied this model to the Sea of Okhotsk and successfully reproduced the δ15N of nitrate measured in seawater and the seasonal variations in δ15N of sinking particles obtained from sediment trap experiments. Simulated δ15N of phytoplankton are determined by δ 15N of nitrate and ammonium, and the nitrogen f-ratio, defined as the ratio of nitrate assimilation by phytoplankton to total nitrogenous nutrient assimilation. Detailed considerations of biological processes in the spring and autumn blooms have demonstrated that there is a significant difference between simulated δ15N values of phytoplankton, which assimilates only nitrate, and only ammonium, respectively. We suggest that observations of δ 15N values of phytoplankton, nitrate and ammonium in the spring and autumn blooms may indicate the ratios of nutrient selectivity by phytoplankton. In winter, most of the simulated biogeochemical fluxes decrease rapidly, but nitrification flux decreases much more slowly than the other biogeochemical fluxes. Therefore, simulated δ15N values and concentrations of ammonium reflect almost only nitrification. We suggest that the nitrification rate can be parameterized with observations of δ15N of ammonium in winter and a sensitive study varying the parameter of nitrification rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, T. A. and R. W. Sterner (2000): The effect of dietary nitrogen content on trophic level 15N enrichment. Limnol. Oceanogr., 45, 601–607.

    Google Scholar 

  • Altabet, M. A. and W. G. Deuser (1985): Seasonal variations in natural abundance of 15N in particles sinking to the deep Sargasso Sea. Nature, 315, 218–219.

    Article  Google Scholar 

  • Altabet, M. A. and R. Francois (1994): Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Global Biogeochem. Cycles, 8, 103–116.

    Article  Google Scholar 

  • Altabet, M. A. and R. Francois (2001): Nitrogen isotope biogeochemistry of the Antarctic Polar Frontal Zone at 170°W. Deep-Sea Res. II, 48, 4247–4273.

    Article  Google Scholar 

  • Altabet, M. A. and J. J. McCarthy (1985): Temporal and spatial variations in the natural abundance of 15N in PON from a warm-core ring. Deep-Sea Res., 32, 755–772.

    Article  Google Scholar 

  • Altabet, M. A. and L. F. Small (1990): Nitrogen isotope ratios in fecal pellets produced by marine zooplankton. Geochim. Cosmochim. Acta, 54, 155–163.

    Article  Google Scholar 

  • Altabet, M. A., W. G. Deuser, S. Honjo and C. Stienen (1991): Seasonal and depth-related changes in the source of sinking particles in the North Atlantic. Nature, 354, 136–138.

    Article  Google Scholar 

  • Altabet, M. A., C. Pilskaln, C. P. Thunell, D. Sigman, F. Chavez and R. Francois (1999): The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res. I, 46, 655–679.

    Google Scholar 

  • Casciotti, K. L., D. M. Sigman and B. B. Ward (2003): Linking diversity and stable isotope fractionation in ammonium-oxidizing bacteria. Geomicrobiology J., 20, 335–353.

    Google Scholar 

  • Checkley, D. M. and C. A. Miller (1989): Nitrogen isotope fractionation by oceanic zooplankton. Deep-Sea Res., 36, 1449–1456.

    Article  Google Scholar 

  • Cifuentes, L. A., M. L. Fogel, J. R. Pennock and J. H. Sharp (1989): Biogeochemical factors that influence the stable nitrogen isotope ratio of dissolved ammonium in the Delaware Estuary. Geochim. Cosmochim. Acta, 53, 2713–2721.

    Article  Google Scholar 

  • David, R. (2001): δ15N as an integrator of the nitrogen cycles. Trends in Ecology & Evolution, 16, 153–162.

    Google Scholar 

  • Dugdale, R. C. and F. P. Wilkerson (1986): The use of 15N to measure nitrogen uptake in eutrophic oceans; experimental considerations. Limnol. Oceanogr., 31, 673–689.

    Google Scholar 

  • Fujii, M., Y. Nojiri, Y. Yamanaka and M. J. Kishi (2002): A one-dimensional ecosystem model applied to time series Station KNOT. Deep-Sea Res. II, 49, 5441–5461.

    Article  Google Scholar 

  • Giraud, X., P. Bertrand, V. Garcon and I. Dadou (2000): Modeling δ15N evolution: First palaeoceanographic applications in a coastal upwelling system. J. Mar. Res., 58, 609–630.

    Article  Google Scholar 

  • Giraud, X., P. Bertrand, V. Garcon and I. Dadou (2003): Interpretation of the nitrogen isotopic signal variations in the Mauritanian upwelling with a 2D physical-biogeochemical model. Global Biogeochem. Cycles, 17, 2801–2819.

    Article  Google Scholar 

  • Hoch, M. P., R. A. Snyder, L. A. Cifuentes and R. B. Coffin (1996): Stable isotope dynamics of nitrogen recycled during interactions among marine bacteria and protests. Mar. Ecol. Prog. Ser., 132, 229–239.

    Google Scholar 

  • Honda, M. C., M. Kusakabe, S. Nakabayashi, S. J. Manganini and S. Honjo (1997): Change in pCO2 through biological activity in the marginal sea of the Western North Pacific: the efficiency of the biological pump estimated by a sediment trap experiment. J. Oceanogr., 53, 645–662.

    Google Scholar 

  • Horrigan, S. G., J. P. Montoya, J. L. Nevins and J. J. McCarthy (1990): Natural isotopic composition of dissolved inorganic nitrogen in the Chesapeake Bay. Estuar., Coast. Shelf Sci., 30, 393–410.

    Google Scholar 

  • Imai, K., Y. Nojiri, N. Tsurushima and T. Saino (2002): Time series of seasonal variation of primary productivity at station KNOT (44°N, 155°E) in the sub-arctic western North Pacific. Deep-Sea Res. II, 49, 5395–5408.

    Article  Google Scholar 

  • Kawamiya, M., M. J. Kishi, Y. Yamanaka and N. Suginohara (1997): Procuring reasonable results in different oceanic regimes with the same ecological-physical coupled model. J. Oceanogr., 53, 397–402.

    Google Scholar 

  • Klaas, C. and D. E. Archer (2002): Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochem. Cycles, 16, doi:10.1029/2001GB001765.

    Google Scholar 

  • Minagawa, M. and E. Wada (1984): Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta, 48, 1135–1140.

    Article  Google Scholar 

  • Miyake, Y. and E. Wada (1971): The isotope effect on the nitrogen in biochemical, oxidation—Reduction reactions. Records of Oceanographic Works in Japan, 11, 1–6.

    Google Scholar 

  • Mizuta, G., Y. Fukamachi, K. I. Ohshima and M. Wakatsuchi (2003): Structure and seasonal variability of the East Sakhalin Current. J. Phys. Oceanogr., 33, 2430–2445.

    Article  Google Scholar 

  • Montoya J. P. and J. J. McCarthy (1995): Isotopic fractionation during nitrate uptake by phytoplankton grown in continuous culture. J. Plankton Res., 17, 439–464.

    Google Scholar 

  • Montoya, J. P., S. G. Horrigan and J. J. McCarthy (1990): Natural abundance of 15N in particulate nitrogen and zooplankton in the Chesapeake Bay. Mar. Ecol. Prog. Ser., 65, 35–61.

    Google Scholar 

  • Montoya, J. P., S. G. Horrigan and J. J. McCarthy (1991): Rapid, storm-induced changes in the natural abundance of 15N in a planktonic ecosystem, Chesapeake Bay, USA. Geochim. Cosmochim. Acta, 55, 3627–3638.

    Article  Google Scholar 

  • Nakatsuka, T. and N. Handa (1997): Reconstruction of seasonal variation in nutrient budget of a surface mixed layer using δ15N of sinking particle collected by a time-series sediment trap system. J. Oceanogr., 53, 105–116.

    Google Scholar 

  • Nakatsuka, T., T. Fujimune, C. Yoshikawa, S. Noriki, K. Kawamura, Y. Fukamachi, G. Mizuta and M. Wakatsuchi (2004): Biogenic and lithogenic particle fluxes in the western region of the Sea of Okhotsk: implications for lateral material transport and biological productivity. J. Geophys. Res., 109, C09S13, doi: 10.1029/2003JC001908.

    Google Scholar 

  • Ohshima, K. I., M. Wakatsuchi, Y. Fukamachi and G. Mizuta (2002): Near-surface circulation and tidal currents of the Okhotsk Sea observed with the satellite-tracked drifters. J. Geophys. Res., 107, 3195, doi: 10.1029/2001JC001005.

    Article  Google Scholar 

  • Oschlies, A. and V. Garcon (1999): An eddy-permitting coupled physical-biological model of the North Atlantic. Global Biogeochem. Cycles, 13, 135–160.

    Article  Google Scholar 

  • Ostrom, N. E., S. A. Macko, D. Deibel and R. J. Thompson (1997): Seasonal variation in the stable carbon and nitrogen isotope biogeochemistry of a coastal cold ocean environment. Geochim. Cosmochim. Acta, 61, 2929–2942.

    Article  Google Scholar 

  • Pena, M. A., K. L. Denman, S. E. Calvert, R. E. Thomson and J. R. Forbes (1999): The seasonal cycle in sinking particle fluxes off Vancouver Island, British Columbia. Deep-Sea Res. II, 46, 2969–2992.

    Google Scholar 

  • Pennock, J. R., D. J. Velinsky, J. M. Ludlam and M. L. Fogel (1996): Isotopic fractionation of ammonium and nitrate during uptake by Skeletonema costatum: Implications for δ15N dynamics under bloom conditions. Limnol. Oceanogr., 41, 451–459.

    Google Scholar 

  • Saino, T. and A. Hattori (1980): 15N natural abundance in oceanic suspended particulate matter. Nature, 283, 752–754.

    Article  Google Scholar 

  • Saino, T. and A. Hattori (1987): Geographical variation of the water column distribution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep-Sea Res., 34, 807–827.

    Article  Google Scholar 

  • Sambrotto, R. N. (2001): Nitrogen production in the northern Arabian Sea during the Spring Intermonsoon and Southwest Monsoon seasons. Deep-Sea Res. II, 48, 1173–1198.

    Article  Google Scholar 

  • Sambrotto, R. N. and B. J. Mace (2000): Coupling of biological and physical regimes across the Antarctic Polar Front as reflected by nitrogen production and recycling. Deep-Sea Res. II, 47, 3339–3367.

    Article  Google Scholar 

  • Sigman, D. M., M. A. Altabet, D. C. McCorkle, R. Francois and G. Fischer (1999): The δ15N of nitrate in the Southern Ocean: Consumption of nitrate in surface waters. Global Biogeochem. Cycles, 13, 1149–1166.

    Article  Google Scholar 

  • Sorokin, Y. I. and P. Y. Sorokin (1999): Production in the Sea of Okhotsk. J. Plankton Res., 21, 201–230.

    Google Scholar 

  • Sutka, R. L., N. E. Ostrom, P. H. Ostrom and M. S. Phanikumar (2004): Stable nitrogen isotope dynamics of dissolved nitrate in a transect from the North Pacific Subtropical Gyre to the Eastern Tropical North Pacific. Geochem. Cosmochim. Acta, 68, 517–527.

    Article  Google Scholar 

  • Voss, M., M. A. Altabet and B. V. Bodungen (1996): δ15N in sedimenting particles as indicator of euphotic-zone processes. Deep-Sea Res. I, 43, 33–47.

    Google Scholar 

  • Wada, E. (1980): Nitrogen isotope fractionation and its significance in biogeochemical processes occurring in marine environments. p. 375–398. In Isotope Marine Chemistry, ed. by E. D. Goldberg and Y. Horibe, Uchida Rokakuho, Tokyo.

    Google Scholar 

  • Waniek, J. J. (2003): The role of physical forcing in initiation of spring blooms in the northeast Atlantic. J. Mar. Sys., 39, 57–82.

    Google Scholar 

  • Waser, N. A., K. Yin, Z. Yu, K. Tada, P. J. Harrison, D. H. Turpin and S. E. Calvert (1998): Nitrogen isotope fractionation during nitrate, ammonium and urea uptake by marine diatoms and coccolithophores under various conditions of N availability. Mar. Ecol. Prog. Ser., 169, 29–41.

    Google Scholar 

  • Wilkerson, F. P., R. C. Dugdale, R. M. Kudela and F. P. Chavez (2000): Biomass and productivity in Monterey Bay, California: contribution of the large phytoplankton. Deep-Sea Res. II, 47, 1003–1022.

    Article  Google Scholar 

  • Wu, J., S. E. Calvert and C. S. Wong (1997): Nitrogen isotope variations in the subarctic northeast Pacific: relationships to nitrate utilization and trophic structure. Deep-Sea Res. I, 44, 287–314.

    Google Scholar 

  • Wu, J., S. E. Calvert, C. S. Wong and F. A. Whitney (1999): Carbon and nitrogen isotopic composition of sedimenting particulate material at Station Papa in the subarctic northeast Pacific. Deep-Sea Res. II, 46, 2793–2832.

    Article  Google Scholar 

  • Yamanaka, Y., N. Yoshie, M. Fujii, M. N. Aita and M. J. Kishi (2004): An ecosystem model coupled with Nitrogen-Silicon-Carbon cycles applied to Station A7 in the Northwestern Pacific. J. Oceanogr., 60, 227–241.

    Article  Google Scholar 

  • Yoshikawa, C., T. Nakatsuka, K. Kawamura and M. Wakatsuchi (2001): Seasonal changes in the fluxes of total organic carbon and the δ15N of the sinking particles off the east coast of Sakhaline Island. p. 106–107. In Proceedings of the International Symposium on Atmosphere-Ocean-Cryosphere Interaction in the Sea of Okhotsk and the Surrounding Environment, ed. by M. Wakatsuchi and T. Hara.

  • Yoshikawa, C., T. Nakatsuka, K. Kawamura and M. Wakatsuchi (2005): The δ15N of nitrate and N* as the tracers for the nitrogen cycle in the Sea of Okhotsk (in preparation).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chisato Yoshikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshikawa, C., Yamanaka, Y. & Nakatsuka, T. An Ecosystem Model Including Nitrogen Isotopes: Perspectives on a Study of the Marine Nitrogen Cycle. J Oceanogr 61, 921–942 (2005). https://doi.org/10.1007/s10872-006-0010-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-006-0010-5

Keywords

Navigation